In Uncategorized on April 3, 2011 by Swami Uddipayan


The atomic orbital model is the currently accepted model of the placement of electrons in an atom. It is sometimes called the wave mechanics model. In the atomic orbital model, the atom consists of a nucleus surrounded by orbiting electrons. These electrons exist in atomic orbitals, which are a set of quantum states of the negatively charged electrons trapped in the electrical field generated by the positively charged nucleus. The atomic orbital model can only be described by quantum mechanics, in which the electrons are most accurately described as standing waves surrounding the nucleus.

Despite the obvious analogy to planets revolving around the Sun, electrons cannot be described as solid particles. In addition, atomic orbitals do not closely resemble a planet’s elliptical path in ordinary atoms. A more accurate analogy might be that of a large and often oddly-shaped “atmosphere” (the electron), distributed around a relatively tiny planet (the atomic nucleus). One difference is that some of an atom’s electrons have zero angular momentum, so they cannot in any sense be thought of as moving “around” the nucleus, as a planet does. Other electrons do have varying amounts of angular momentum.

An atomic orbital is a mathematical function that describes the wave-like behavior of either one electron or a pair of electrons in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom’s nucleus. These functions may serve as three-dimensional graphs of an electron’s likely location. The term may thus refer directly to the physical region defined by the function where the electron is likely to be. Specifically, atomic orbitals are the possible quantum states of an individual electron in the collection of electrons around a single atom, as described by the orbital function.

Atomic orbitals exactly describe the shape of this “atmosphere” only when a single electron is present in an atom. When more electrons are added to a single atom, the additional electrons tend to more evenly fill in a volume of space around the nucleus so that the resulting collection (sometimes termed the atom’s “electron cloud” tends toward a generally spherical zone of probability describing where the atom’s electrons will be found.

The idea that electrons might revolve around a compact nucleus with definite angular momentum was convincingly argued in 1913 by Niels Bohr, and the Japanese physicist Hantaro Nagaoka published an orbit-based hypothesis for electronic behavior as early as 1904. However, it was not until 1926 that the solution of the Schrödinger equation for electron-waves in atoms provided the functions for the modern orbitals.

Because of the difference from classical mechanical orbits, the term “orbit” for electrons in atoms, has been replaced with the term orbital—a term first coined by chemist Robert Mulliken in 1932. Atomic orbitals are typically described as “hydrogen-like” (meaning one-electron) wave functions over space, categorized by n, l, and m quantum numbers, which correspond to the electrons’ energy, angular momentum, and an angular momentum direction, respectively. Each orbital is defined by a different set of quantum numbers and contains a maximum of two electrons. The simple names s orbital, p orbital, d orbital and f orbital refer to orbitals with angular momentum quantum number l = 0, 1, 2 and 3 respectively. These names indicate the orbital shape and are used to describe the electron configurations as shown on the right. They are derived from the characteristics of their spectroscopic lines: sharp, principal, diffuse, and fundamental, the rest being named in alphabetical order (omitting j).

In the mathematics of atomic physics, it is also often convenient to reduce the electron functions of complex systems into combinations of the simpler atomic orbitals. Although each electron in a multi-electron atom is not confined to one of the “one-or-two-electron atomic orbitals” in the idealized picture above, still the electron wave-function may be broken down into combinations which still bear the imprint of atomic orbitals; as though, in some sense, the electron cloud of a many-electron atom is still partly “composed” of atomic orbitals, each containing only one or two electrons. The physicality of this view is still best-illustrated in the repetitive nature of the chemical and physical behavior of elements which results in the natural ordering known from the 19th century as the periodic table of the elements. Niels Bohr was the first to propose (1923) that the periodicity in the properties of the elements might be explained by the periodic filling of the electron energy levels, resulting in the electronic structure of the atom. In this view, pairs of electrons are arranged in simple repeating patterns of increasing odd numbers (1,3,5,7..), suggesting something like what we now recognize as atomic orbitals within the total electron configuration of complex atoms. In this ordering, the repeating periodicity of the blocks of 2, 6, 10, and 14 elements in the periodic table, corresponds with the total number of electrons which occupy a complete set of s, p, d and f atomic orbitals, respectively.


With the development of quantum mechanics, it was found that the orbiting electrons around a nucleus could not be fully described as particles, but needed to be explained by the wave-particle duality. In this sense, the electrons have the following properties:

Wave-like properties

The electrons do not orbit the nucleus in the sense of a planet orbiting the sun, but instead exist as standing waves. The lowest possible energy an electron can take is therefore analogous to the fundamental frequency of a wave on a string. Higher energy states are then similar to harmonics of the fundamental frequency.

The electrons are never in a single point location, although the probability of interacting with the electron at a single point can be found from the wavefunction of the electron.

Particle-like properties

There is always an integer number of electrons orbiting the nucleus.

Electrons jump between orbitals in a particle-like fashion. For example, if a single photon strikes the electrons, only a single electron changes states in response to the photon.

The electrons retain particle like-properties such as: each wave state has the same electrical charge as the electron particle. Each wave state has a single discrete spin (spin up or spin down).

Orbital names

Orbitals are given names in the form:

where X is the energy level corresponding to the principal quantum number n, type is a lower-case letter denoting the shape or subshell of the orbital and it corresponds to the angular quantum number l, and y is the number of electrons in that orbital.

For example, the orbital 1s2 (pronounced “one ess two”) has two electrons and is the lowest energy level (n = 1) and has an angular quantum number of l = 0. In X-ray notation, the principal quantum number is given a letter associated with it. For n = 1, 2, 3, 4, 5, …, the letters associated with those numbers are K, L, M, N, O, … respectively.

Formal quantum mechanical definition

In quantum mechanics, the state of an atom, i.e. the eigenstates of the atomic Hamiltonian, is expanded (see configuration interaction expansion and basis set) into linear combinations of anti-symmetrized products (Slater determinants) of one-electron functions. The spatial components of these one-electron functions are called atomic orbitals. (When one considers also their spin component, one speaks of atomic spin orbitals.)

In atomic physics, the atomic spectral lines correspond to transitions (quantum leaps) between quantum states of an atom. These states are labeled by a set of quantum numbers summarized in the term symbol and usually associated to particular electron configurations, i.e. by occupations schemes of atomic orbitals (e.g. 1s2 2s2 2p6 for the ground state of neon — term symbol: 1S0).

This notation means that the corresponding Slater determinants have a clear higher weight in the configuration interaction expansion. The atomic orbital concept is therefore a key concept for visualizing the excitation process associated to a given transition. For example, one can say for a given transition that it corresponds to the excitation of an electron from an occupied orbital to a given unoccupied orbital. Nevertheless one has to keep in mind that electrons are fermions ruled by the Pauli exclusion principle and cannot be distinguished from the other electrons in the atom. Moreover, it sometimes happens that the configuration interaction expansion converges very slowly and that one cannot speak about simple one-determinantal wave function at all. This is the case when electron correlation is large.

Fundamentally, an atomic orbital is a one-electron wavefunction, even though most electrons do not exist in one-electron atoms, and so the one-electron view is an approximation. When thinking about orbitals, we are often given an orbital vision which (even if it is not spelled out) is heavily influenced by this Hartree–Fock approximation, which is one way to reduce the complexities of molecular orbital theory.

Connection to uncertainty relation

Immediately after Heisenberg formulated his uncertainty relation, it was noted by Bohr that the existence of any sort of wave packet implies uncertainty in the wave frequency and wavelength, since a spread of frequencies is needed to create the packet itself. In quantum mechanics, where all particle momenta are associated with waves, it is the formation of such a wave packet which localizes the wave, and thus the particle, in space. In states where a quantum mechanical particle is bound, it must be localized as a wave packet, and the existence of the packet and its minimum size implies a spread and minimal value in particle wavelength, and thus also momentum and energy. In quantum mechanics, as a particle is localized to a smaller region in space, the associated compressed wave packet requires a larger and larger range of momenta, and thus larger kinetic energy. Thus, the binding energy to contain or trap a particle in a smaller region of space, increases without bound, as the region of space grows smaller. Particles cannot be restricted to a geometric point in space, since this would require an infinite particle momentum.

In chemistry, Schrödinger, Pauling, Mulliken and others noted that the consequence of Heisenberg’s relation was that the electron, as a wave packet, could not be considered to have an exact location in its orbital. Max Born suggested that the electron’s position needed to be described by a probability distribution which was connected with finding the electron at some point in the wave-function which described its associated wave packet. The new quantum mechanics did not give exact results, but only the probabilities for the occurrence of a variety of possible such results. Heisenberg held that the path of a moving particle has no meaning if we cannot observe it, as we cannot with electrons in an atom.

In the quantum picture of Heisenberg, Schrödinger and others, the Bohr atom number n for each orbital became known as an n-sphere in a three dimensional atom and was pictured as the mean energy of the probability cloud of the electron’s wave packet which surrounded the atom.

Although Heisenberg used infinite sets of positions for the electron in his matrices, this does not mean that the electron could be anywhere in the universe. Rather there are several laws that show the electron must be in one localized probability distribution. An electron is described by its energy in Bohr’s atom which was carried over to matrix mechanics. Therefore, an electron in a certain n-sphere had to be within a certain range from the nucleus depending upon its energy. This restricts its location.

Hydrogen-like atoms

The simplest atomic orbitals are those that occur in an atom with a single electron, such as the hydrogen atom. In this case the atomic orbitals are the eigenstates of the hydrogen Hamiltonian. They can be obtained analytically. An atom of any other element ionized down to a single electron is very similar to hydrogen, and the orbitals take the same form.

For atoms with two or more electrons, the governing equations can only be solved with the use of methods of iterative approximation. Orbitals of multi-electron atoms are qualitatively similar to those of hydrogen, and in the simplest models, they are taken to have the same form. For more rigorous and precise analysis, the numerical approximations must be used.

A given (hydrogen-like) atomic orbital is identified by unique values of three quantum numbers: n, l, and ml. The rules restricting the values of the quantum numbers, and their energies (see below), explain the electron configuration of the atoms and the periodic table.

The stationary states (quantum states) of the hydrogen-like atoms are its atomic orbital. However, in general, an electron’s behavior is not fully described by a single orbital. Electron states are best represented by time-depending “mixtures” (linear combinations) of multiple orbitals. See Linear combination of atomic orbitals molecular orbital method.

The quantum number n first appeared in the Bohr model where it determines the radius of each circular electron orbit. In modern quantum mechanics however, n determines the mean distance of the electron from the nucleus; all electrons with the same value of n lie at the same average distance. For this reason, orbitals with the same value of n are said to comprise a “shell”. Orbitals with the same value of n and also the same value of l are even more closely related, and are said to comprise a “subshell”.

Quantum numbers

Because of the quantum mechanical nature of the electrons around a nucleus, they cannot be described by a location and momentum. Instead, they are described by a set of quantum numbers that encompasses both the particle-like nature and the wave-like nature of the electrons. An atomic orbital is uniquely identified by the values of the three quantum numbers, and each set of the three quantum numbers corresponds to exactly one orbital, but the quantum numbers only occur in certain combinations of values. The quantum numbers, together with the rules governing their possible values, are as follows:

The principal quantum number, n, describes the energy of the electron and is always a positive integer. In fact, it can be any positive integer, but for reasons discussed below, large numbers are seldom encountered. Each atom has, in general, many orbitals associated with each value of n; these orbitals together are sometimes called electron shells.

The azimuthal quantum number describes the orbital angular momentum of each electron and is a non-negative integer. Within a shell where n is some integer n0, ranges across all (integer) values satisfying the relation? For instance, the n = 1 shell has only orbitals with, and the n = 2 shell has only orbitals with, and. The set of orbitals associated with a particular value of are sometimes collectively called a subshell.

The magnetic quantum number, describes the magnetic moment of an electron in an arbitrary direction, and is also always an integer. Within a subshell where is some integer, ranges thus:

Subshells are usually identified by their n- and -values. n is represented by its numerical value, but is represented by a letter as follows: 0 is represented by ‘s’, 1 by ‘p’, 2 by ‘d’, 3 by ‘f’, and 4 by ‘g’. For instance, one may speak of the subshell with n = 2 and as a ‘2s subshell’.

Each electron also has a spin quantum number, s, which describes the spin of each electron (spin up or spin down). The number s can be +1⁄2 or -1⁄2.

The Pauli exclusion principle states that no two electrons can occupy the same quantum state: every electron in an atom must have a unique combination of quantum numbers.

The shapes of orbitals

Cross-section of computed hydrogen atom orbital (ψ2) for the 6s (n=6, l=0, m=0) orbital. Note that s orbitals, though spherically symmetrical, have radially placed wave-nodes for n > 1. However, only s orbitals invariably have a center anti-node; the other types never do.
Any discussion of the shapes of electron orbitals is necessarily imprecise, because a given electron, regardless of which orbital it occupies, can at any moment be found at any distance from the nucleus and in any direction due to the uncertainty principle.

However, the electron is much more likely to be found in certain regions of the atom than in others. Given this, a boundary surface can be drawn so that the electron has a high probability to be found somewhere within the surface, and all regions outside the surface have low values. The precise placement of the surface is arbitrary, but any reasonably compact determination must follow a pattern specified by the behavior of |ψ|2, the square of the absolute value (also called magnitude or modulus) of the complex-valued wavefunction. This boundary surface is sometimes what is meant when the “shape” of an orbital is referred to. Sometimes the ψ function will be graphed to show its phases, rather than the |ψ|2 which shows probability density but has no phases (which have been lost is the process of taking the absolute value, since ψ is a complex number). |ψ|2 orbital graphs tend to have less spherical, thinner lobes than ψ graphs, but have the same number of lobes in the same places, and otherwise are recognizable.

Generally speaking, the number n determines the size and energy of the orbital for a given nucleus: as n increases, the size of the orbital increases. However, in comparing different elements, the higher nuclear charge, Z, of heavier elements causes their orbitals to contract by comparison to lighter ones, so that the overall size of the whole atom remains very roughly constant, even as the number of electrons in heavier elements (higher Z) increases.

Also in general terms, determines an orbital’s shape, and its orientation. However, since some orbitals are described by equations in complex numbers, the shape sometimes depends on also.

The single s-orbitals () are shaped like spheres. For n = 1 the sphere is “solid” (it is most dense at the center and fades exponentially outwardly), but for n = 2 or more, each single s-orbital is composed of spherically symmetric surfaces which are nested shells (i.e., the “wave-structure” is radial, following a sinusoidal radial component as well). See illustration of a cross-section of these nested shells, at right. The s-orbitals for all n numbers are the only orbitals with an anti-node (a region of high wave function density) at the center of the nucleus. All other orbitals (p, d, f, etc.) have angular momentum, and thus avoid the nucleus (having a wave node at the nucleus).

The three p-orbitals for n = 2 have the form of two ellipsoids with a point of tangency at the nucleus (the two-lobed shape is sometimes referred to as a “dumbbell”). The three p-orbitals in each shell are oriented at right angles to each other, as determined by their respective linear combination of values of .

The five d orbitals in ψ2 form, with a combination diagram showing how they fit together to fill space around an atomic nucleus.
Four of the five d-orbitals for n = 3 look similar, each with four pear-shaped lobes, each lobe tangent to two others, and the centers of all four lying in one plane, between a pair of axes. Three of these planes are the xy-, xz-, and yz-planes, and the fourth has the centres on the x and y axes. The fifth and final d-orbital consists of three regions of high probability density: a torus with two pear-shaped regions placed symmetrically on its z axis.

There are seven f-orbitals, each with shapes more complex than those of the d-orbitals.

For each s, p, d, f and g set of orbitals, the set of orbitals which composes it forms a spherically symmetrical set of shapes. For non-s orbitals, which have lobes, the lobes point in directions so as to fill space as symmetrically as possible for number of lobes which exist for a set of orientations. For example, the three p orbitals have six lobes which are oriented to each of the six primary directions of 3-D space; for the 5 d orbitals, there are a total of 18 lobes, in which again six point in primary directions, and the 12 additional lobes fill the 12 gaps which exist between each pairs of these 6 primary axes.

Additionally, as is the case with the s orbitals, individual p, d, f and g orbitals with n values higher than the lowest possible value, exhibit an additional radial node structure which is reminiscent of harmonic waves of the same type, as compared with the lowest (or fundamental) mode of the wave. As with s orbitals, this phenomenon provides p, d, f, and g orbitals at the next higher possible value of n (for example, 3p orbitals vs. the fundamental 2p), an additional node in each lobe. Still higher values of n further increase the number of radial nodes, for each type of orbital.

The shapes of atomic orbitals in one-electron atom are related to 3-dimensional spherical harmonics. These shapes are not unique, and any linear combination is valid, like a transformation to cubic harmonics, in fact it is possible to generate sets where all the d’s are the same shape, just like the px, py, and pz are the same shape.

Understanding why atomic orbitals take these shapes

The shapes of atomic orbitals can be understood qualitatively by considering the analogous case of standing waves on a circular drum. The many modes of the vibrating disk form the shape of atomic orbitals. It follows that the shapes of atomic orbitals are a direct consequence of the wave nature of the electrons.

A number of modes are shown below together with their quantum numbers. The analogous wave functions of the hydrogen atom are also indicated.

Mode u01 (1s orbital)

Mode u02 (2s orbital)

Mode u03 (3s orbital)

Mode u11 (2p orbital)

Mode u12 (3p orbital)

Mode u13 (4p orbital)

Mode u21 (3d orbital)

Mode u22 (4d orbital)

Mode u23 (5d orbital)

Orbital energy

Electron shell

In atoms with a single electron (hydrogen-like atoms), the energy of an orbital (and, consequently, of any electrons in the orbital) is determined exclusively by n. The n = 1 orbital has the lowest possible energy in the atom. Each successively higher value of n has a higher level of energy, but the difference decreases as n increases. For high n, the level of energy becomes so high that the electron can easily escape from the atom. In single electron atoms, all levels with different within a given n are (to a good approximation) degenerate, and have the same energy. [This approximation is broken to a slight extent by the effect of the magnetic field of the nucleus, and by quantum electrodynamics effects. The latter induce tiny binding energy differences especially for s electrons that go nearer the nucleus, since these feel a very slightly different nuclear charge, even in one-electron atoms.

In atoms with multiple electrons, the energy of an electron depends not only on the intrinsic properties of its orbital, but also on its interactions with the other electrons. These interactions depend on the detail of its spatial probability distribution, and so the energy levels of orbitals depend not only on n but also on . Higher values of are associated with higher values of energy; for instance, the 2p state is higher than the 2s state. When = 2, the increase in energy of the orbital becomes so large as to push the energy of orbital above the energy of the s-orbital in the next higher shell; when = 3 the energy is pushed into the shell two steps higher. The filling of the 3d orbitals does not occur until the 4s orbitals have been filled.

The increase in energy for subshells of increasing angular momentum in larger atoms is due to electron-electron interaction effects, and it is specifically related to the ability of low angular momentum electrons to penetrate more effectively toward the nucleus, where they are subject to less screening from the charge of intervening electrons. Thus, in atoms of higher atomic number, the of electrons becomes more and more of a determining factor in their energy, and the principal quantum numbers n of electrons becomes less and less important in their energy placement.

Electron configuration and electron shell

Several rules govern the placement of electrons in orbitals (electron configuration). The first dictates that no two electrons in an atom may have the same set of values of quantum numbers (this is the Pauli exclusion principle). These quantum numbers include the three that define orbitals, as well as s, or spin quantum number. Thus, two electrons may occupy a single orbital, so long as they have different values of s. However, only two electrons, because of their spin, can be associated with each orbital.

Additionally, an electron always tends to fall to the lowest possible energy state. It is possible for it to occupy any orbital so long as it does not violate the Pauli exclusion principle, but if lower-energy orbitals are available, this condition is unstable. The electron will eventually lose energy (by releasing a photon) and drop into the lower orbital. Thus, electrons fill orbitals in the order specified by the energy sequence given above.

This behavior is responsible for the structure of the periodic table. The table may be divided into several rows (called ‘periods’), numbered starting with 1 at the top. The presently known elements occupy seven periods. If a certain period has number i, it consists of elements whose outermost electrons fall in the ith shell.

The periodic table may also be divided into several numbered rectangular ‘blocks’. The elements belonging to a given block have this common feature: their highest-energy electrons all belong to the same -state (but the n associated with that -state depends upon the period). For instance, the leftmost two columns constitute the ‘s-block’. The outermost electrons of Li and Be respectively belong to the 2s subshell, and those of Na and Mg to the 3s subshell.

The following is the order for filling the “subshell” orbitals, which also gives the order of the “blocks” in the periodic table:
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p
The “periodic” nature of this filling of orbitals is more obvious if the order is given with increasing principle quantum numbers starting new rows, and repeating each subshell is given as many times as required for each pair of electrons it may contain:

2s 2p, 2p, 2p
3s 3p, 3p, 3p
4s 3d, 3d, 3d, 3d, 3d, 4p, 4p, 4p
5s 4d, 4d, 4d, 4d, 4d, 5p, 5p, 5p
6s (4f) 5d, 5d, 5d, 5d, 5d, 6p, 6p, 6p
7s (5f) 6d, 6d, 6d, 6d, 6d, 7p, 7p, 7p

The number of electrons in a neutral atom increases with the atomic number. The electrons in the outermost shell, or valence electrons, tend to be responsible for an element’s chemical behavior. Elements that contain the same number of valence electrons can be grouped together and display similar chemical properties.

Main article: Relativistic quantum chemistry

For elements with high atomic number Z, the effects of relativity become more pronounced, and especially so for s electrons, which move at relativistic velocities as they penetrate the screening electrons near the core of high Z atoms. This relativistic increase in momentum for high speed electrons causes a corresponding decrease in wavelength and contraction of 6s orbitals relative to 5d orbitals (by comparison to corresponding s and d electrons in lighter elements in the same column of the periodic table); this results in 6s valence electrons becoming lowered in energy.

Examples of significant physical outcomes of this effect include the lowered melting temperature of mercury (which results from 6s electrons not being available for metal bonding) and the golden color of gold and caesium (which results from narrowing of 6s to 5d transition energy to the point that visible light begins to be absorbed).

In the Bohr Model, an n = 1 electron has a velocity given by v = Zαc, where Z is the atomic number, α is the fine-structure constant, and c is the speed of light. In non-relativistic quantum mechanics, therefore, any atom with an atomic number greater than 137 would require its 1s electrons to be traveling faster than the speed of light. Even in the Dirac equation, which accounts for relativistic effects, the wavefunction of the electron for atoms with Z > 137 is oscillatory and unbounded. The significance of element 137, also known as untriseptium, was first pointed out by the physicist Richard Feynman. Element 137 is sometimes informally called feynmanium (symbol Fy). However, Feynman’s approximation fails to predict the exact critical value of Z due to the non-point-charge nature of the nucleus and very small orbital radius of inner electrons, resulting in a potential seen by inner electrons which is effectively less than Z. The critical Z value which makes the atom unstable with regard to high-field breakdown of the vacuum and production of electron-positron pairs, does not occur until Z is about 173. These conditions are not seen except transiently in collisions of very heavy nuclei such as lead or uranium in accelerators, where such electron-positron production from these effects has been claimed to be observed. See Extension of the periodic table beyond the seventh period.

Transitions between orbitals

Under quantum mechanics, each quantum state has a well-defined energy. When applied to atomic orbitals, this means that each state has a specific energy, and that if an electron is to move between states, the energy difference is also very fixed.

Consider two states of the Hydrogen atom:

State 1) n=1, l=0, ml=0 and s=+1⁄2

State 2) n=2, l=0, ml=0 and s=+1⁄2

By quantum theory, state 1 has a fixed energy of E1, and state 2 has a fixed energy of E2. Now, what would happen if an electron in state 1 were to move to state 2? For this to happen, the electron would need to gain an energy of exactly E2 – E1. If the electron receives energy that is less than or greater than this value, it cannot jump from state 1 to state 2. Now, suppose we irradiate the atom with a broad-spectrum of light. Photons that reach the atom that have an energy of exactly E2 – E1 will be absorbed by the electron in state 1, and that electron will jump to state 2. However, photons that are greater or lower in energy cannot be absorbed by the electron, because the electron can only jump to one of the orbitals, it cannot jump to a state between orbitals. The result is that only photons of a specific frequency will be absorbed by the atom. This creates a line in the spectrum, known as an absorption line, which corresponds to the energy difference between states 1 and 2.

The atomic orbital model thus predicts line spectra, which are observed experimentally. This is one of the main validations of the atomic orbital model.

The atomic orbital model is nevertheless an approximation to the full quantum theory, which only recognizes many electron states. The predictions of line spectra are qualitatively useful but are not quantitatively accurate for atoms and ions other than those containing only one electron.

Historical context

Main article: Atomic theory

The Rutherford Bohr model of the hydrogen atom.
After the discovery of the photoelectric effect, the connection between the structure of electrons in atoms and the emission and absorption spectra of atoms became an increasingly useful tool in the understanding of electrons in atoms. The most prominent feature of emission and absorption spectra was that these spectra contained discrete lines. The significance of the Bohr model was that it related the lines in emission and absorption spectra to the energy differences between the orbits that electrons could take around an atom. This was achieved by giving the electrons some kind of wave-like properties. In particular, electrons were assumed to have a wavelength (a property that had previously been discovered, but not entirely understood). The Bohr model was therefore not only a significant step towards the understanding of electrons in atoms, but also a significant step towards the development of the wave/particle duality of quantum mechanics.

The premise of the model was that electrons had a wavelength, which was a function of its momentum, and therefore an orbiting electron would need to orbit at a multiple of the wavelength. The Bohr model was thus a classical model with an additional constraint provided by the ‘wavelength’ argument. In our current understanding of physics, this ‘wavelength’ argument is known to be an element of quantum mechanics, and for that reason the Bohr model is called a semi-classical model.

The Bohr model was able to explain the emission and absorption spectra of Hydrogen. The energies of electrons in the n=1, 2, 3, etc. states in the Bohr model match those of current physics. However, this did not explain similarities between different atoms, as expressed by the periodic table, such as why Helium (2 electrons), Neon (10 electrons), and Argon (18 electrons) exhibits similar chemical behaviour. Modern physics explains this by noting that the n=1 state can hold 2 electrons, the n=2 state can hold 8 electrons, and the n=3 state can hold 8 electrons. In the end, this was solved by the discovery of modern quantum mechanics and the Pauli Exclusion Principle.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: